Cimiracemosides I-P, New 9,19-Cyclolanostane Triterpene Glycosides from Cimicifuga racemosa

Shao-Nong Chen, Daniel S. Fabricant, Zhi-Zhen Lu, Harry H. S. Fong,* and Norman R. Farnsworth
Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS, M/ C 877), and UIC/
NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612

Received February 28, 2002

Abstract

Eight new and 13 known triterpene glycosides, along with the known compounds glyceryl-1-palmitate and daucosterol-6'-linoleate were isolated from the roots/rhizomes of Cimicifuga racemosa. The new compounds, designated as cimiracemosides I-P (1,3-9), were determined by spectral analysis to be 7-dehydro-23-epi-12,26-dideoxyacteol-3-O- β-D-xylopyranoside (1), 12-O-acetyl-25-anhydrocimigenol-3-O-α-L-arabinopyranoside (3), 12-O-acetyl-25-anhydrocimigenol-3-O- β-d-xylopyranoside (4), 4',23-O-diace-tylshengmanol-3-O- β-D-xyl opyranoside (5), 4',23-O-diacetylshengmanol-3-O- α-L-arabinopyranoside (6), 23-epi-acetylacteol-3-O- α-L-arabinopyranoside (7), 4'-O-acetyl-26-deoxyactein (8), and 16 β :23;24:25-diepoxy12β-O-acetyl-3 β-hydroxy-9,19-cyclolanost-23,26-olide-O- β-D-xylopyranoside (9).

Cimicifuga racemosa (L.) Nutt. (Ranunculaceae) or Actaea racemosa L. ${ }^{1,2}$ is commonly known as black cohosh. It is widely used in the United States as a herbal dietary supplement for the relief of dimacteric symptoms related to menopause. ${ }^{3,4}$ Studies to date have resulted in the isolation of a number of triterpene glycosides. ${ }^{5-15}$

In our studies on the chemical characterization and standardization of C. racemosa extracts to be used in our biological and clinical studies, we previously reported the isolation of a new triterpene glycoside, 26-deoxyactein, and the correction of the existing nomenclature of 27-deoxyactein to 23-epi-26-deoxyactein. ${ }^{16}$ In a continuation of our chemical investigation, we have isolated 21 additional triterpene glycosides and two other known compounds. In this paper, we describe the isolation and structure elucidation of eight new 9,19-cydolanostane triterpene glycosides, cimiracemosides I-P (1, 3-9), and the isolation and identification of 13 known triterpene glycosides, including 25 -anhydrocimigenol-3-O- β-D-xyloside, ${ }^{17}$ 25-anhydrocimi-genol-3-O- α-L-arabinoside, ${ }^{18}$ cimigenol-3-O- β-D-xyloside, ${ }^{18}$ cimigenol-3-O- $\alpha-L-$ arabinoside, ${ }^{19}$ 25-O-acetyl cimigenol- 3-O-β-D-xyloside ${ }^{19 a} 25-\mathrm{O}-$ acetylcimigenol-3-O- α-L-arabinoside, ${ }^{20}$ 23-O-acetyl-shengmanol-3-O- $\alpha-$-L-arabinoside, ${ }^{21}$ cimicifugoside $\mathrm{H}-1,{ }^{22}$ cimicifugoside $\mathrm{H}-2,{ }^{23} 24-\mathrm{O}$-acetylshengmanol, ${ }^{24}$ 2'-O-acetylactein, ${ }^{25}$ 23-O-acetylshengmanol-3-O- α-L-arabinoside, ${ }^{8}$ and 26-deoxycimicifugoside (2). ${ }^{26}$ Additionally, the known compounds glyceryl-1-palmitate ${ }^{27}$ and daucosterol-6'-linoleate were also isolated. ${ }^{28}$

Results and Discussion

Cimiracemoside I (1) was isolated as a pale yellow powder. In the high-resolution positiveHRTOF-ESIMS, it showed a quasi-molecular ion at $\mathrm{m} / \mathrm{z} 623.3581[\mathrm{M}+\mathrm{Na}]^{+}$ for a molecular formula of $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8}$. Its IR spectrum showed absorption at $3420 \mathrm{~cm}^{-1}$ for OH . In the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1), the characteristic cycl opropane methylene signals at $\delta_{\mathrm{H}} 0.46$ and 0.97 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}$); six methyl groups at $\delta_{\mathrm{H}} 1.04,1.10,1.26,1.35,1.47$, and $1.00(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz})$; an anomeric proton at $\delta_{\mathrm{H}} 4.87(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz})$; and an olefinic proton at $\delta_{\mathrm{H}} 5.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2$ Hz) were observed. The ${ }^{13} \mathrm{C}$ and DE PT NMR spectra (Table

[^0]2) showed signals ascribable to three oxygen-bearing methine carbons at $\delta_{\mathrm{C}} 88.1$ (C-3), 74.9 (C-16), 62.6 (C-24); one oxygen-bearing methylene carbon at $\delta_{\mathrm{C}} 68.0$ (C-26); and two oxygen-bearing quaternary carbons at $\delta_{\mathrm{C}} 106.2$ (C-23) and 62.1 (C-25) for the aglycone moiety. These spectra also showed five oxygenated carbons assignable to a glycosidic moiety [$\delta_{c} 107.6$ (C-1́), 75.6 (C-2'), 78.7 (C-3'), 71.3 (C-4'), $67.2\left(\mathrm{C}-5^{\prime}\right)$]. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra disclosed that $\mathbf{1}$ has partial structures of $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$ - (due to C_{1} to C_{3}); $-\mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{sp}^{2}\right)$ - (for C_{5} to C_{7}); $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ (for C_{11} to C_{12}); $-\mathrm{CH}_{2} \mathrm{CHCHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ - (for C_{15} to $\mathrm{C}_{17}, \mathrm{C}_{20}$ to C_{22}); two pairs of geminal signals for $\mathrm{CH}_{2}-19$ and $\mathrm{CH}_{2}-$ 26; and $-\mathrm{CHCHCHCHCH}_{2}$ - (for $\mathrm{C}-1^{\prime}$ to $\mathrm{C}-5^{\prime}$) that were compatible for rings A, B, C, D, and part of E of a 9,19-cyclolanostane-type triterpene skeleton linked to a fivecarbon glycoside unit.

The HMBC spectrum showed correlations between H-7 ($\delta_{H} 5.08$) and a methine signal at $\delta_{C} 42.7$ (C-5), a methylene signal at $\delta_{\mathrm{C}} 21.8$ ($\mathrm{C}-6$), and signals of two quaternary carbons at $\delta_{\mathrm{C}} 21.0$ (C-9) and 49.8 (C-14); between $\mathrm{H}_{\mathrm{a}}-15$ ($\delta_{\mathrm{H}} 2.11$) and signals of two quaternary carbons at $\delta_{\mathrm{C}} 44.1$ (C-13) and 49.8 (C-14), a methine signal at $\delta_{\mathrm{C}} 56.9$ (C-17), and a methyl signal at $\delta_{\mathrm{C}} 26.9(\mathrm{C}-28)$; between $\mathrm{H}_{\mathrm{a}}-22\left(\delta_{\mathrm{H}}\right.$ 1.58) and a quaternary carbon at $\delta_{\mathrm{C}} 106.2$ (C-23), and methine carbons at $\delta_{\mathrm{c}} 56.9$ (C-17), 23.7 (C-20); and between $\mathrm{H}_{\mathrm{b}}-26$ ($\delta_{\mathrm{H}} 3.61$) and two quaternary carbon signals at δ_{C} 106.2 (C-23) and 62.1 (C-25). Additionally, the methyl signal at $\delta_{\mathrm{H}} 1.46$ ($\mathrm{Me}-27$) showed correlations with a methylene signal at $\delta_{\mathrm{C}} 68.0$ (C-26), a methine signal at δ_{C} 62.6 (C-24), and a quaternary carbon signal at $\delta_{\mathrm{C}} 62.1$ (C25). Therefore, the aglycone structure of $\mathbf{1}$ was elucidated as 7-dehydro-12,26-dideoxyacteol.

In the HMBC spectrum, a correlation was also observed between the proton signal at $\delta_{\mathrm{H}} 4.87\left(\mathrm{H}-\mathrm{I}^{\prime}, 1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4\right.$ Hz) and the methine signal at $\delta_{\mathrm{C}} 88.1(\mathrm{C}-3)$, suggesting that the sugar moiety was attached at the C-3 position (see Figure 1). The coupling constants ($\mathrm{H}^{\prime}-\mathrm{H}^{\prime}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 2^{-}-\mathrm{H} 3^{\prime}}$ $=6.9 \mathrm{~Hz}$, and J H^{\prime} а- $\mathrm{H}^{\prime}=4.1 \mathrm{~Hz}$, J н $5^{\prime} \mathrm{b}-\mathrm{H} 4^{\prime}=10.3 \mathrm{~Hz}$) indicated that the protons at $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$, and $\mathrm{C}-4^{\prime}$ are in the axial-, equatorial-, axial-, equatorial direction, which means the hydroxyl groups at $\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$, and $\mathrm{C}-4^{\prime}$ are in the $\alpha-, \beta$-, and α-positions, as found in β-D-xylopyranoside. ${ }^{29}$ The relative configuration of $\mathrm{H}-3$ was assigned to an axial
Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Cimiracemoside $\mathbf{I}-\mathbf{P}(\mathbf{1}, \mathbf{3}-\mathbf{9})$ in Pyridine $\mathrm{d}_{5}{ }^{\mathrm{a}}$

proton	1	3	4	5	6	7	8	9
1	1.70 (m)	1.58 (brd. 12.2)	1.56 (brt, 12.4)	1.62 (overlapped)	1.60 (overlapped)	1.49 (overlapped)	1.51 (overlapped)	1.57 (overlapped)
	1.30 (m)	1.11 (brd. 14.4)	1.08 (brd. 14.4)	1.28 (overlapped)	1.28 (overlapped)	1.12 (overlapped)	1.12 (overlapped)	1.14 (overlapped)
2	2.33 (m, overlapped)	2.32 (m)	2.30 (m)	2.42 (m)	2.31 (m)	2.28 (m)	2.24 (m)	2.32 (m)
	1.30 (m, overlapped)	1.33 (m)	1.90 (m)	1.35 (m)	1.95 (m)	1.83 (m)	1.85 (m)	1.88 (m)
3	3.48 (brd, 7.5)	3.49 (dd, 3.1, 7.9)	3.49 (dd, 3.5, 10.8)	3.53 (dd, 4.3, 11.7)	3.55 (dd, 4.0, 12.8)	3.44 (dd, 4.2, 13.0)	3.43 (dd, 4.0, 11.4)	3.48 (brd, 7.0)
5	1.24 (overlapped)	1.77 (brd,12.4)	1.76 (brd, 12.2)	1.39 (overlapped)	1.39 (overlapped)	1.22 (overlapped)	1.21 (overlapped)	1.27 (overlapped)
6	1.80 (m)	1.56 (m)	1.53 (m)	1.60 (m)	1.59 (m)	1.38 (m)	1.27 (m)	1.43 (overlapped)
	1.46 (m)	0.75 (m)	0.73 (m)	0.76 (m)	0.79 (m)	0.63 (m)	0.67 (m)	0.70 (m)
7	5.08 (d, 7.2)	2.22 (m)	2.19 (m)	1.30 (overlapped)	2.10 (overlapped)	1.29 (overlapped)	1.25 (overlapped)	1.25 (overlapped)
		1.12 (m)	1.10 (m)	1.14 (overlapped)	1.18 (overlapped)	0.89 (overlapped)	0.89 (overlapped)	0.95 (overlapped)
8		1.29 (overlapped)	1.30 (overlapped)	1.88 (dd, 4.4, 12.4)	1.88 (dd, 4.6, 11.5)	1.60 (m)	1.62 (m)	1.63 (m)
11	2.09 (m)	2.29 (m)	2.26 (m)	2.10 (m)	2.10 (m)	2.71 (dd, 8.8, 15.4)	2.71 (m)	2.75 (m)
	1.11 (m)	1.03 (m)	1.02 (m)	1.15 (m)	1.15 (m)	1.16 (overlapped)	1.21 (overlapped)	1.21 (overlapped)
12	1.66 (2H) (m)	5.27 (brd, 7.8)	5.28 (brd, 7.6)	1.80 (2H) (m)	1.82 (2H) (m)	5.12 (overlapped)	5.10 (brd, 6.0)	5.11 (brd 6.8)
15	2.11 (brt, 8.6)	4.42 (s)	4.42 s	4.35 s	4.39 s	1.88 (m)	1.75 (m)	1.90 (overlapped)
	1.96 (dd, 6.3, 11.4)					1.76 (m)	1.55 (m)	1.64 (overlapped)
16	4.31 (dd, 6.7, 12.0)					4.24 (brt, 6.9)	4.62 (dd, 7.1, 14.3)	4.05 (brt, 7.7)
17	1.56 (t, 13.5)	1.65 (overlapped)	1.64 (overlapped)	2.35 (d, 6.5)	2.39 (d, 6.5)	1.79 (overlapped)	1.78 (overlapped)	1.86 (overlapped)
18	1.26 s	1.37 s	1.32 s	1.38 s	1.38 s	1.42 s	1.37 s	1.33 s
19	0.97 (d, 3.5)	0.61 (d, 4)	0.60 (d, 3.4)	0.59 (d, 3.7)	0.60 (d, 3.6)	0.54 (d, 3.6)	0.57 (d, 4.5)	0.57 (d, 3.8)
	0.46 (d, 3.5)	0.32 (d, 4)	0.32 (d, 3.4)	0.32 (d, 3.7)	0.33 (d, 3.6)	0.19 (d, 3.6)	0.23 (d, 4.5)	0.26 (d, 3.8)
20	2.26 (overlapped)	1.64 (overlapped)	1.64 (overlapped)	2.14 (overlapped)	2.13 (overlapped)	2.23 (overlapped)	1.80 (overlapped)	1.85 (overlapped)
21	1.00 (d, 6.4)	0.94 (d, 6.5)	0.95 (d, 6.5)	1.27 (d, 6.9)	1.27 (d, 6.8)	1.02 (d, 6.3)	0.98 (d, 6.5)	0.93 (d, 5.0)
22	1.58 (brd. 13.5)	2.94 (dd, 9.6, 15.4)	2.94 (dd, 9.5, 16.1)	2.69 (brt 12.2)	2.69 (brt, 12.8)	1.58 (overlapped)	2.24 (overlapped)	2.21 (overlapped)
	1.40 (brt, 14.7)	1.17 (brd, 15.3)	1.16 (brd, 16.1)	1.77 (m)	1.78 (m)	1.45 (overlapped)	1.70 (dd, 6.5, 18.0)	1.67 (overlapped)
23		4.31 (overlap)	4.30 (d, 8.5)	5.42 (brt, 8.4)	5.39 (brt, 8.4)			
24	3.70 s	4.12 (brs)	4.18 (brs)	3.05 (d, 8.4)	3.05 (d, 8.4)	3.68 s	3.95 s	4.41 s
26	4.04 (d, 10.2)	5.36 (brs)	5.35 (brs)	1.26 s	1.26 s	4.07 (d, 10.5)	5.76 s	
	3.61 (d, 10.2)	4.89 (brs)	4.89 (brs)			3.63 (d, 10.5)		
27	1.46 s	1.85 s	1.85 s	1.40 s	1.41 s	1.48 s	1.79 s	1.65 s
28	1.10 s	1.20 s	1.20 s	1.22 s	1.22 s	0.85 s	0.80 s	0.85 s
29	1.35 s	1.28 s	1.31 s	1.31 s	1.34 s	1.27 s	1.79 s	1.33 s
30	1.04 s	1.01 s	1.04 s	1.06 s	1.07 s	0.96 s	0.98 s	1.02 s
$1 '$	4.87 (d, 7.4)	4.79 (d, 6.8)	4.84 (d, 7.4)	4.82 (d, 7.1)	4.90 (d, 7.2)	4.78 (d, 6.8)	4.85 (d, 7.3)	4.87 (d, 7.1)
2	4.05 (overlapped)	4.44 (t, 7.8)	4.03 (dd, 8.0, 15.4)	4.48 (brt, 8.1)	4.29 (t, 8.6)	4.45 (t, 14.5)	4.04 (dd, 8.5, 8.3)	4.05 (m)
3	4.18 (t, 6.9)	4.17 (overlapped)	4.15 (t, 8.4)	4.21 (d, 7.3)	4.08 (t, 6.7)	4.24 (d, 6.9)	4.28 (dd, 9.1,9.2)	4.20 (t, 8.6)
4^{\prime}	4.24 (dd, 6.0, 9.0)	4.32 (overlapped)	4.21 (m)	5.61 brs	5.41 (overlapped)	4.33 (brs)	5.41 (ddd, 5.4, 9.7, 9.7)	4.22 (m)
5	4.38 (dd, 4.5, 10.5)	4.31 (overlapped)	4.34 (dd, 4.8, 9.8)	4.28 (d, 12.6)	4.38 (overlapped)	4.31 (d, 11.0.2)	4.34 (dd, 5.5,11.4)	4.38 (m)
	3.76 (t, 10.3)	3.79 (brd, 11.3)	3.72 (dd, 9.8, 9.1)	3.85 (d, 12.6)	3.63 (t, 10.5)	3.80 (d, 11.0.2)	3.61 (dd, 10.9, 11.4)	3.76 (9.8, 10.1)
OAc		2.13 s	2.12 s	2.06 s	1.99 s	2.14 s	2.16 s	2.16 s
				2.12 s	2.07 s		1.99 s	

[^1]Table 2. ${ }^{13} \mathrm{C}$ NMR Data of Cimiracemosides $\mathbf{I}-\mathbf{P}(\mathbf{1}, \mathbf{3}-\mathbf{9})$ in Pyridine $\mathrm{d}_{5}{ }^{a}$

C	1	3	4	5	6	7	8	9
1	30.9 t	32.4 t	32.4 t	32.2 t	32.2 t	31.9 t	31.9 t	31.9 t
2	29.6 t	30.1 t	30.0 t	30.1 t	30.0 t	29.8 t	29.5 t	29.9 t
3	88.1 d	88.3 d	88.3 d	88.8 d	88.5 d	88.1 d	88.2 d	88.1 d
4	40.4 s	41.3 s	41.3 s	41.4 s	41.4 s	41.2 s	41.2 s	41.2 s
5	42.7 d	47.2 d	47.2 d	47.5 d	47.4 d	47.0 d	46.9 d	45.7 d
6	21.8 t	20.8 t	20.8 t	21.0 t	21.1 t	20.3 t	20.4 t	20.4 t
7	113.5 d	26.0 t	26.0 t	26.7 t	26.4 t	25.6 t	25.6 t	25.7 t
8	149.2 s	47.2 d	47.2 d	48.3 d	48.3 d	45.6 d	45.7 d	47.0 d
9	21.0 s	20.1 s						
10	23.7 s	26.8 s	26.8 s	26.8 s	26.8 s	26.7 s	26.7 s	26.8 s
11	25.3 t	38.5 t	38.5 t	26.0 t	26.7 t	36.6 t	36.7 t	36.6 t
12	32.9 t	77.3 d	77.3 d	33.1 t	33.1 t	77.1 d	77.0 d	76.8 d
13	44.1 s	48.4 s	48.4 s	41.6 s	41.6 s	48.8 s	48.7 s	48.8 s
14	49.8 s	46.1 s	46.1 s	46.1 s	46.1 s	47.8 s	47.8 s	48.0 s
15	43.0 t	79.3 d	79.3 d	83.0 d	83.0 d	44.1 t	43.5 t	43.2 t
16	74.9 d	112.3 s	112.3 s	220.0 s	220.0 s	74.7 d	73.0 d	75.6 d
17	56.9 d	59.6 d	59.6 d	60.0 d	60.0 d	56.2 d	56.4 d	55.6 d
18	22.9 q	12.7 q	12.7 q	19.8 q	19.8 q	13.5 q	13.5 q	13.5 q
19	28.3 t	30.9 t	30.9 t	30.5 t	30.0 t	29.5 t	29.8 t	29.6 t
20	23.7 d	23.9 d	23.9 d	28.0 d	28.0 d	23.3 d	26.0 d	25.3 d
21	20.8 q	19.8 q	19.8 q	20.4 q	20.4 q	21.3 q	21.0 q	20.7 q
22	37.5 t	37.5 t	37.5 t	37.0 t	37.0 t	37.5 t	37.6 t	35.6 t
23	106.2 s	74.7 d	74.6 d	72.1 d	72.1 d	105.9 s	105.8 s	106.2 s
24	62.6 d	86.5 d	86.5 d	65.2 d	65.2 d	62.5 d	63.4 d	62.7 d
25	62.1 s	145.8 s	145.8 s	58.6 s	58.6 s	62.2 s	65.8 s	58.6 s
26	68.0 t	113.2 t	113.2 t	24.7 q	24.7 q	68.1 t	98.4 d	172.4 s
27	14.3 q	18.1 q	18.1 q	19.4 q	19.4 q	14.3 q	13.1 q	11.1 q
28	26.9 q	12.0 q	12.0 q	12.0 q	12.0 q	19.6 q	19.5 q	19.5 q
29	25.8 q	25.7 q	25.6 q	25.7 q				
30	14.3 q	15.4 q	15.4 q	15.5 q	15.4 q	15.3 q	15.3 q	15.3 q
1	107.6 d	107.4 d	107.5 d	107.6 d	107.4 d	107.5 d	107.3 d	107.6 d
$2{ }^{\prime}$	75.6 d	73.0 d	75.6 d	73.2 d	75.0 d	72.9 d	75.7 d	75.4 d
3	78.7 d	74.7 d	78.6 d	72.6 d	75.8 d	74.5 d	75.0 d	78.7 d
4^{\prime}	71.3 d	69.5 d	71.6 d	72.1 d	73.2 d	69.6 d	73.1 d	71.3 d
5'	67.2 t	66.7 t	67.1 t	64.4 t	63.2 t	66.8 t	63.2 t	67.2 t
OAc		170.6 s	170.6 s	170.9 s	170.5 s	170.7 s	170.6 s	170.5 s
		21.7 q	21.7 q	170.7 s	170.5 s	21.7 q	170.6 s	21.6 q
				21.0 q	20.9 q		$21.6 \mathrm{q}$	
				21.2 q	21.0 q		20.9 q	

a TMS was used as internal standard.

Figure 1. Major long-distance ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations of $\mathbf{1}$ observed by HMBC (300 MHz , pyridine-d ${ }_{5}$).
direction, i.e., the α-position on the basis of the coupling constants of H-3 with two protons at C-2 (brd, J $\mathrm{H} 3-\mathrm{H} 2=$ 7.5 Hz).

A comparison of the above data with those of $\mathbf{2}$ showed that, structurally, $\mathbf{1}$ closely resembles that of the known compound 26-deoxycimicifugoside (2), ${ }^{26}$ except for the absence of an acetyl group at C-12 and the other differences between them at C-16 and C-20, which are very similar to the differences between 26-deoxyactein and 23-epi-26deoxyactein. ${ }^{16}$ By comparing the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts of $\mathbf{1}$ with those of 26 -deoxyactein and 23-epi-26-deoxyactein, the relative configurations of $\mathrm{H}-16$ and $\mathrm{H}-24$ were both determined to be in the α-position. The structure of $\mathbf{1}$ was thus elucidated as (23S)-16 $\beta, 23: 23 \beta, 26: 24 \beta: 25$-triepoxy-9, 19-cycl ol anost-7-en-3 β-O- β-d-xyl opyranoside.

The spectral features of cimiracemosides J (3) and K (4) were very similar to each other. The HRTOF-ESIMS of both compounds exhibited a sodiated molecular ion at m / z 683.37 [M + Na] ${ }^{+}$(3, m/z 683.3763; 4, m/z 683.3745) for
the same molecular formula of $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{10} \mathrm{Na}$, which is 58 Da more than those of 25-anhydrocimigenol glycosides. ${ }^{17,18}$ The IR spectrum of each compound showed hydroxyl and carbonyl absorptions at $3468,1731 \mathrm{~cm}^{-1}$ (3) and 3425,1732 $\mathrm{cm}^{-1}(4)$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra (Table 1) of 3 and 4 indicated the presence of the characteristic cydopropane methylene signals [$\mathbf{3}, \delta_{\mathrm{H}} 0.32,0.61$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.0 \mathrm{~Hz}$); 4, $\delta_{\mathrm{H}} 0.32,0.59$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}$)]; six methyl groups at $\delta_{H} 1.01,1.20,1.28,1.37,1.85$, and 0.94 $(d, J=6.5 \mathrm{~Hz})$ for 3; $\delta_{H} 1.04,1.20,1.31,1.32,1.85$, and 0.95 (d, J $=6.5 \mathrm{~Hz}$) for 4; an acetyl methyl (3, $\delta_{H} 2.13$; 4, $\delta_{\mathrm{H}} 2.12$); an anomeric proton (3, $\delta_{\mathrm{H}} 4.79 ; 4, \delta_{\mathrm{H}} 4.84$); an oxygen-bearing methine proton ($\mathbf{3}, \delta_{\mathrm{H}} 5.27 ; \mathbf{4}, \delta_{\mathrm{H}} 5.28$); and two olefinic protons (3, $\delta_{\mathrm{H}} 5.36,4.89 ; 4, \delta_{\mathrm{H}} 5.35,4.89$), suggesting both compounds are similar to 25-anhydrocimigenol glycoside and with an acetyl substituent group. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Table 2) of both compounds, 37 carbons were evident, which represent two resonance signals more than those of 25-anhydrocimigenol glycosides. The DEPT resonance signals at $\delta_{\mathrm{c}} 107.6$ (d), 73.0 (d), 74.7 (d), 69.5 (d), and 66.7 (t) in 3 and at $\delta_{\mathrm{c}} 107.6$ (d), 75.6 (d), 78.6 (d), 71.6 (d), and 67.1 (t) in 4 indicated the presence of an arabinose and a xylose moiety, respectively. ${ }^{17,18}$ The remaining 32 carbon signals were identified as the aglycone signals of an acetyl-containing 25-anhydrocimigenol. ${ }^{17,18}$ The acetyl group was assigned to $\mathrm{C}-12$ on the basis of the correlation of $\mathrm{H}-12\left(\mathbf{3}, \delta_{\mathrm{H}} 5.57 ; 4, \delta_{\mathrm{H}} 5.58\right)$ with the acetyl at $\delta_{\mathrm{C}} 170.6$ in the HMBC spectrum and the correlation of $\mathrm{H}-12$ with $\mathrm{H}_{2}-11\left(3, \delta_{\mathrm{H}} 1.03,2.29 ; 4, \delta_{\mathrm{H}} 1.02,2.26\right)$ in the

1. $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\beta$-D-xyloside, $\Delta^{7}, 23 S$
2. $R_{1}=O A c, R_{2}=\alpha$-L-arabinoside, $23 S$

3. $R=\alpha$-L-arabinoside, $23 R, 24 S$
4. $R=\beta$-D-xyloside, $23 R, 24 S$

5. $R=4$ '-O-acetyl- β-D-xyloside, $23 R$

6. 26-deoxycimicifugoside

7. $\mathrm{R}=4$ 4-O-acetyl- α-L-arabinoside, 23R, 24S
8. $R=4$ '-O-acetyl- β-D-xyloside, $23 R, 24 S$

9. $23 R$
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. The configurations of C-23 and $\mathrm{C}-24$ were assigned as R and S , respectively, by comparing the coupling constants of the C-23 and C-24 proton signals of $\mathbf{3}$ and $\mathbf{4}$ with those of known 9,19-cyclolanostane triterpene glycosides. ${ }^{7}$ Therefore, $\mathbf{3}$ and $\mathbf{4}$ were elucidated as (23R,24S)-16 $\beta, 23: 16 \alpha, 24$-diepoxy-12 β-acetyoxyl-15 α-hydroxy-9,19-cyclol anost-25-en-3 β-O- α-L-arabinopyranoside (3) and (23R,24S)-16 $\beta, 23: 16 \alpha, 24$-diepoxy-12 β-acetyoxyl-15 α-hydroxy-9,19-cycl ol anost-25-en-3 β-O- β-D-xylopyranoside (4), respectively.

Cimiracemoside L(5) was isolated as a white powder. The high-resolution positive TOF-ESIMS established the molecular formula of 5 as $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{11}$. The IR spectrum showed absorptions of hydroxyl and carbonyl groups at 3466 and at $1737 \mathrm{~cm}^{-1}$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) displayed cyclopropane methylene signals at $\delta_{\mathrm{H}} 0.32$ and 0.59 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}$); seven methyl groups at $\delta_{\mathrm{H}} 1.06,1.22,1.26,1.31,1.38,1.40$, and 1.27 (d, $\mathrm{J}=6.9 \mathrm{~Hz}$); two acetyl methyls at $\delta_{\mathrm{H}} 2.06$ and 2.12; and an anomeric proton at $\delta_{\mathrm{H}} 4.82(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz})$, suggesting 5 to be a 9,19-cycl olanostane triterpene glycoside with two acetyl groups. Furthermore, two significant downfield signals were observed at $\delta_{\mathrm{H}} 5.61$ (brs) and 5.42 (brt, J $=$ 8.4 Hz) in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. The proton at δ_{H} 5.61 showed correlations with the methine signal at $\delta_{H} 4.21$ $\left(\mathrm{H}-3^{\prime}\right)$ and with the methylene signals at $\delta_{\mathrm{H}} 4.28$ and 3.85 $\left(\mathrm{H}_{2}-5^{\prime}\right)$. The methine signal at $\delta_{\mathrm{H}} 4.21$ showed correlations with a second methine signal at $\delta_{\mathrm{H}} 4.48$ ($\mathrm{H}-2^{\prime}$), which, in turn, showed a correlation with an anomeric proton at δ_{H} 4.82. From this evidence, we can deduce that an acetyl group is attached at C-4'. This conclusion was also supported by an analysis of the HMBC spectrum, which showed correlation between the $\mathrm{H}-4^{\prime}$ and the acetyl group signal at $\delta_{\mathrm{C}} 170.7$. The signal at $\delta_{\mathrm{H}} 5.42$ showed correlations with a methine signal at $\delta_{\mathrm{H}} 3.04(\mathrm{H}-24)$ and methylene signals at $\delta_{\mathrm{H}} 2.69$ and $1.77\left(\mathrm{H}_{2}-22\right)$, indicating an
acetyl group being attached to C-23. Significant HMBC correlations were observed between the quaternary carbon signal at $\delta_{\mathrm{C}} 220.0(\mathrm{C}-16)$ and $\mathrm{H}-15\left(\delta_{\mathrm{H}} 4.35\right)$ and between the methine signal at $\delta_{\mathrm{C}} 83.0(\mathrm{C}-15)$ and $\mathrm{H}-17$ ($\delta_{\mathrm{H}} 2.35$), $\mathrm{C}-15$ and $\mathrm{Me}-28$ ($\delta_{\mathrm{H}} 1.22$). The configurations of C-23 and C-24 were assigned as R and S , respectively, by comparing the coupling constants of the $\mathrm{C}-23$ and $\mathrm{C}-24$ proton signals of 5 with those of known 9,19-cyclolanostane triterpene glycosides. ${ }^{22}$ The aglycone, therefore, was identified as 23-O-acetylshengmanol, 22 and the structure of 5 was elucidated as (23R,24S)-23,4'-O-diacetyl oxy-24 $\alpha, 25-$ epoxy- 3β-O(α-L-arabinopyranosyloxy)-1 α-hydroxy-9,19-cycl ol anostan-16-one.

The molecular formula of cimiracemoside M (6) was determined as $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{11}$, which is identical to 5 by highresolution positive TOF-ESIMS. The IR and NMR data of 6 were al so very similar to those of $\mathbf{5}$. The major difference in the ${ }^{1} \mathrm{H}$ NMR of the two compounds involves the anomeric proton. The signals at $\delta_{\mathrm{H}} 4.82(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz})$ in 5 was shifted downfield to $\delta_{\mathrm{H}} 4.90$ (d, J $=7.2 \mathrm{~Hz}$) in 6; $\delta_{\mathrm{H}} 4.48$ for $\mathrm{H}-2^{\prime}$ in 5 was shifted to $\delta_{\mathrm{H}} 4.29$ in 6; and $\delta_{\mathrm{H}} 4.21$ for $\mathrm{H}-3^{\prime}$ in 5 shifted upfield to $\delta_{\mathrm{H}} 4.09$ in 6. In the ${ }^{13} \mathrm{C}$ and DEPT NMR spectra (Table 2), 6 exhibited signals very similar to those of 5, except for the sugar moiety. The signals at $\delta_{\mathrm{C}} 107.4$ (d), 75.0 (d), 75.8 (d), 73.2 (d), and 63.2 (t) are assignable to a xyloside with an acetyl group attached at C-4'. The signals of the other 32 carbon signals were identical to the aglycone signals of 5 . Therefore, 6 was deduced to be (23R,24S)-23,4'-O-diacetyl oxy-24 $\alpha, 25$-epoxy15α-hydroxy-3 β-O-(β-D-xylopyranosyloxy)-9,19-cyclolanostan-16-one.

Cimiracemoside N (7) was isolated as a pale yellow powder. In the high-resolution positive TOF-ESIMS, it showed a quasi-molecular ion at $\mathrm{m} / \mathrm{z} 661.3962[\mathrm{M}+\mathrm{H}]^{+}$ for a molecular formula of $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{10}$, which is identical to 26-deoxyactein. ${ }^{15}$ The IR spectrum indicated the presence
of hydroxyl and ester carbonyl groups at 3454 and 1729 cm^{-1}, respectively. The NMR spectra of 7 resemble those of 26-deoxyactein, with the main difference being that the anomeric proton at $\delta_{\mathrm{H}} 4.86$ ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}$) was shifted upfield to $\delta_{\mathrm{H}} 4.78(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz})$ and the $\mathrm{H}-2^{\prime}$ signal shifted downfield from $\delta_{\mathrm{H}} 4.05(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$) in 26-deoxyactein to $\delta 4.45$ in 7, respectively.

Comparative analysis of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT NMR spectra of 7 with those of 26-deoxyactein and 23-epi-26deoxyactein showed them to be similar except for the glycoside signals, which at $\delta_{\mathrm{C}} 107.6$ (d), 72.9 (d), 74.5 (d), 69.6 (d), and 66.8 (t) indicated the presence of arabinose instead of the xylose moiety found in 23-epi-26-deoxyactein. Therefore, the structure of 7 was established as (23S)-16 β,23:23 $\beta, 26: 24 \beta, 25$-triepoxy-12 β-acetyloxy-9,19-cyd olanostan3β-O- β-d-xylopyranoside.

Cimiracemoside O (8) (a pale yellow powder) gave a quasi-molecular ion at $\mathrm{m} / \mathrm{z} 701.3889\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}(\mathrm{HR}$ TOF-ESIMS, molecular formula, $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{O}_{12}$). Its IR and NMR spectra were very similar to those of 7. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ differed from $\mathbf{7}$ in that the anomeric proton of 7 at $\delta_{\mathrm{H}} 4.78(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz})$ was shifted downfield to δ_{H} $4.85(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz})$ in 8 . At the same time, the signal for $\mathrm{H}-2^{\prime}$ was shifted upfield to $\delta_{\mathrm{H}} 4.04$ (dd, J $=7.4,15.4 \mathrm{~Hz}$) and the signal for $\mathrm{H}-4^{\prime}$ was shifted downfield to $\delta_{\mathrm{H}} 5.41$ (ddd, J $=5.4,9.7,9.7 \mathrm{~Hz}$) in 8. The downfield shift of H-4' in 8 can be explained by the presence of an acetyl group being attached to it. Moreover, the glycosidic signals observed at $\delta_{\mathrm{C}} 107.3$ (d), 75.7 (d), 75.0 (d), 73.1 (d), and 63.2 (t) are assignable to a xyloside containing an acetyl at C-4'. ${ }^{19}$ Supportive evidence was obtained from the HMBC spectrum, which showed a correlation between the H-4' signal and acetyl group signal at δ_{C} 170.7. Comparison of the NMR data of $\mathbf{8}$ with those of actein indicated that the signals were identical except for those of the sugar moiety. Thus, the configuration of $\mathbf{8}$ should be the same as actein, and the structure of 8 was assigned as (23R)-16 β, 23:23 $\alpha, 26: 24 \alpha, 25$-triepoxy-12,4'-26-hydroxydiacetyloxy-9, 19-cycl olanost-7-en-3 β-O- β-d-xylopyranoside.

Cimiracemoside $P(9)$, isolated as a pale yellow powder, gave a molecular formula ($\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{11}$, HRTOF-ESIMS at $\mathrm{m} / \mathrm{z} 675.3758[\mathrm{M}+\mathrm{H}]^{+}$) that is 2 Da less than that of 7. Its IR spectrum was very similar to that of 7 except for the presence of a lactone absorption at $1787 \mathrm{~cm}^{-1}$. The NMR data of 9 were also very similar to those of $\mathbf{7}$, except for the presence of two proton signals at $\delta_{\mathrm{H}} 3.63$ and 4.07 that were not observed in 9. The anomeric proton of the glycone moiety at $\delta_{\mathrm{H}} 4.79(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz})$ in 7 was shifted downfield to $\delta_{\mathrm{H}} 4.87(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz})$ in 9 . The signal at δ 4.05 for $\mathrm{H}-2^{\prime}$ in 9 was shifted upfield from $\delta_{H} 4.45$ in 7. The ${ }^{13} \mathrm{C}$ and DEPT NMR spectra of 9 (Table 2) were also very similar to those of 7 except for the sugar signals and the absence of the methylene signal at $\delta_{\mathrm{C}} 68.1$ found in 7. The ${ }^{13} \mathrm{C}$ signals at $\delta_{\mathrm{c}} 107.6$ (d), 75.4 (d), 78.7 (d), 71.3 (d), and 67.2 (t) bel onged to a xyloside. In the HMBC spectrum, the Me-27 ($\delta_{H} 1.65$) showed a correlation with the ester carbonyl signal at $\delta_{\mathrm{C}} 172.4$ (C-26), which in turn showed a correlation with a methine signal at $\delta_{\mathrm{C}} 62.7$ (C-24), and a quaternary carbon signal at $\delta_{C} 58.6$ (C-25). The aglycone of 9 was therefore identified as 26 -oxo-acetylacteol. The relative configuration of 9 was determined by analysis of its NMR data and those of actein. The structure of 9 was elucidated as (23R)-16 $\beta, 23: 24 \alpha, 25$-diepoxy-12 β-acetyloxy-9,19-cyd ol anost-23, 26 -ol ide-3-O- β-d-xyl opyranoside.

In addition to the above eight triterpene glycosides being described for the first time from nature, 13 known compounds of previous known structures were identified as 25-
anhydrocimigenol-3-O- β-D-xyl oside, ${ }^{17} 25$-anhydrocimigenol-3-O- α-L-arabinoside, ${ }^{18}$ cimigenol-3-O- β-d-xyloside, ${ }^{18}$ cimi-genol-3-O- α-L-arabinoside, ${ }^{19} 25-\mathrm{O}$-acetylcimigenol- 3-O- β -D-xyloside, ${ }^{20} 25-\mathrm{O}$-acetylcimigenol-3-O- α-L-arabinoside, ${ }^{19 a}$ 23-O-acetylshengmanol-3-O- α-L-arabinoside, ${ }^{21}$ cimicifugoside $\mathrm{H}-1,{ }^{22}$ cimicifugoside $\mathrm{H}-2,{ }^{23}$ 24-O-acetylshengmanol, ${ }^{24}$ 2'-O-acetylactein, ${ }^{25}$ 23-O-acetylshengmanol-3-O- α-L-arabinoside, ${ }^{8}$ 26-deoxycimicifugoside (2), ${ }^{26}$ glyceryl-1-palmitate, ${ }^{27}$ and daucosterol- 6 '-linoleate ${ }^{28}$ by comparing their NMR data to the literature.

Experimental Section

General Experimental Procedures. Melting points were determined on a Fisher-J ohns melting point apparatus. Optical rotations were obtained with a Perkin-Elmer 241 polarimeter (Perkin-EImer, Inc., MA). ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR were measured on a Bruker Avance 500 or 300 MHz instrument (Bruker, Zürich, Switzerland) using TMS as internal standard for chemical shifts. Chemical shifts (δ) were expressed in ppm with reference to the TMS signal. HR-ESI data were recorded on a Micromass (M anchester, UK) Q-TOF-2 system. Infrared spectra were recorded on an ATI Mattson Genesis Series FTIR (ATI Mattson Instruments Inc., WI) by using liquid layer on NaCl . Thin-layer chromatography was performed on precoated TLC plates (250μ m thickness, K 6F Si gel 60 and K 6F RP-18 Si gel 60, EM Science, Germany) with compounds visualized by spraying the dried plates with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in 1-BuOH and followed by heating until dryness. Semipreparative HPLC was carried out on a Waters Delta 600 system with a Waters 996 photodi ode array detector, Waters 717 plus autosampler, and Millennium ${ }^{32}$ Chromatography Manager (Waters Co, MA) on a GROM-Sil 120 ODS-4 HE (Watrex-International, Inc., NY) semipreparative column ($5 \mu \mathrm{~m}, 300 \times 20 \mathrm{~mm}$) with a flow rate of $6 \mathrm{~mL} / \mathrm{min}$. Reversed-phase column chromatography was carried out on Merck Lobar Lichroprep RP-18 columns (EM Science, Germany) with a Fluid pump (FMI, Fluid Metering, Inc., NY) and fraction collector (Spectrum, Spectrum Chromatography, TX). Silica gel (230-400 mesh, Davsil, W.R. Grace \& Co., MD) was used for column chromatography.
Plant Material. Cimicifuga racemosa (L.) Nutt. roots/ rhizomes were collected in Rockbridge County, Virginia (J) une 1999), GPS coordinates $3748.27 \mathrm{~N} \times 7918.67 \mathrm{~W}$, and identified by Dr. G. Ramsey, Department of Biology, Lynchburg College, Lynchburg, VA. Voucher specimens have been deposited at the Ramsey-Freer Herbarium at Lynchburg College, Lynchburg, VA, and at the Field Museum of Natural History Herbarium, Chicago, IL.

Extraction and Isolation. The dried, milled roots/rhizomes of C. racemosa (8 kg) were extracted with MeOH and fractionated by successive partitions with EtOAc and 1-BuOH. The EtOAc-sol uble fraction was chromatographed on a silica gel (2 kg) column to give eight fractions as described previously. ${ }^{16}$ F raction IV (2.3 g) was subjected to normal-phase silica gel column chromatography (100 g) and gradient elution with a solvent system of chloroform-MeOH (40:1 in increasing polarity to 20:1) to afford five fractions (CR-4-SF-I to CR-4-SF-V). The fraction CR-4-SF-I (1.2 g) was subjected to Sephadex LH-20 column chromatography (30 g) and eluted by MeOH to yield the fractions CR-4-SF-I-A to CR-4-SF-I-E (100 mL each). Chromatography of fraction CR-4-SF-I-B (1.0 g) on a silica gel column (100 g), eluting with a petroleum ether-ethyl acetate mixture (gradient of increasing polarity from 2:1 to 1:1), yielded seven major subfractions, CR-4-SF-I-B-1 to CR-4-SF-I-B-7. Separation of CR-4-SF-I-B-1 (450 mg) on a Lichroprep RP-18 col umn (Lobar, $310 \times 25 \mathrm{~mm}, \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 70: 30$) yielded glyceryl-1-palmitate ($5 \mathrm{mg}, 0.0013 \%$ of dried plant material); elution with 100% ACN led to 430 mg of crude daucosterol-6'-linoleate, which was purified on a silica gel column (60 g , elution with CHCl_{3}-acetone, $3: 1$) to yield daucosterol- 6 '-linoleate ($400 \mathrm{mg}, 0.05 \%$). Chromatography of CR-4-SF-I-B-2 (90 mg), first on a Lichroprep RP-18 column (Lobar, $240 \times 10 \mathrm{~mm}, \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 70: 30$), followed by a silica
gel (30 g) column, eluting with petroleum ether-EtOAcMeOH (10.0:4.0:0.5) gave 24-O-acetylshengmanol (4.5 mg , $0.0012 \%)$. Compounds $6(6.1 \mathrm{mg}, 0.0016 \%), 8(5.0 \mathrm{mg}, 0.0013 \%)$, and $\mathbf{5}(7.0 \mathrm{mg}, 0.0018 \%$) were separately obtained by successive chromatographic separation of the respective subfractions, CR-4-SF-I-B-3 (90 mg), CR-4-SF-I-B-4 (85 mg), and CR-4-SF-I-B-5 (100 mg), under the same conditions on a Lichroprep RP18 column (Lobar $240 \times 10 \mathrm{~mm}, \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 65: 35$), followed by a silica gel (30 g) column (eluting with petroleum ether-EtOAc-MeOH, 10.0:4.0:0.5). Separation of CR-4-SF-I-B-7 (90 mg) in a similar manner (Lichroprep RP-18 column: Lobar $240 \times 10 \mathrm{~mm}, \mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 55: 45$; silica gel: 30 g , petroleum ether-EtOAc-MeOH, 10.0:4.0:0.5) yielded 2'-O-acetylactein ($7.0 \mathrm{mg}, 0.0022 \%$).

Fraction V $(23 \mathrm{~g})$ was subjected to a normal-phase silica gel $(250 \mathrm{~g})$ col umn eluted by a gradient solvent system of increasing polarity of petrol eum ether-ethyl acetate from 3:1 to 1:2 to afford 10 subfractions (CRSF-I to CRSF-X). Chromatographic separation of subfraction CR-SF-I (1.8 g) on successive columns of Lichroprep RP-18 (Lobar, $310 \times 25 \mathrm{~mm}$), eluted by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 70: 30$, and $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 55: 45$, respectively, followed by separation on a column of silica gel (100 g) using petroleum ether-EtOAc-MeOH (10.0:4.5:0.5) led to the isolation of 23-O-acetylshengmanol-3-O- $\alpha-\mathrm{L}$-arabinoside (8.1 mg , 0.0021%) and 23-O-acetylshengmanol-3-O- β-D-xyloside (7.3 $\mathrm{mg}, 0.0019 \%)$. Chromatographic treatment of subfraction CR-SF-II (2.8 g) in the same manner as for CR-SF-I afforded cimigenol-3-O- β-D-xyloside ($24 \mathrm{mg}, 0.0063 \%$), cimigenol-3-O-α-L-arabinoside ($7.1 \mathrm{mg}, 0.0019 \%$), and 26 -deoxyactein (4 mg). Cimigenol-3-O- β-D-xyloside ($6 \mathrm{mg}, 0.0016 \%$) was obtained from the post 26-deoxyactein mother liquor ${ }^{16}$ of subfraction CR-SFIII by successive column chromatography on Lichroprep RP18 (Lobar, $240 \times 10 \mathrm{~mm}$, first with $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 45: 55$, then by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 60: 40$) and a silica gel column (30 g , elution by petroleum ether-EtOAc-MeOH, 10.0:5.0:0.5). Separation of subfraction CR-SF-IV (1.9 g) by Lichroprep RP-18 column (L obar, $310 \times 25 \mathrm{~mm}$, initially with $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 40: 60$, followed by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 60: 40$) and a silica gel column (80 g , petroleum ether-EtOAc-MeOH, 10.0:5.0:0.5) led to 26-deoxycimicifugoside ($\mathbf{2}, 3.0 \mathrm{mg} 0.00079 \%$) and the novel isolates $\mathbf{3}(7.3 \mathrm{mg}$, $0.0019 \%), 4$ ($9.4 \mathrm{mg}, 0.0025 \%$), and 9 ($5.1 \mathrm{mg}, 0.0013 \%$). Successive Lichroprep RP-18 (Lobar, $310 \times 25 \mathrm{~mm}$) chromatography of subfraction CR-SF-VI (1.8 g) on columns eluted by $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 50: 50$, and $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 35: 65$, respectively, followed by silica gel (100 g) column chromatography, eluting with petroleum ether-EtOAc-MeOH (10.0:6.5:0.5), yielded $25-$ anhydrocimigenol-3-O- β-D-xyloside ($30 \mathrm{mg}, 0.0039 \%$), $25-$ anhydrocimi genol-3-O- $\alpha-$-L-arabinoside ($5.1 \mathrm{mg}, 0.0013 \%$), and an additional quantity of 23-epi-26-deoxyactein (5.1 mg). Workup of subfraction CR-SF-VII (0.9 g) on silica gel (petroleum ether-EtOAc-MeOH, 10.0:7.0:0.5), Lichroprep RP-18 (Lobar, $310 \times 25 \mathrm{~mm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 40: 60$), and semipreparative HPLC on a C-18 column (linear gradient from 30\% to 70\% ACN in water over 40 min) gave $1(3.2 \mathrm{mg}, 0.0008 \%)$. Chromatography of subfraction CR-SF-VIII (1.9 g) on two successive Lichroprep RP-18 columns (Lobar, $310 \times 25 \mathrm{~mm}$; sol vent for column 1: $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 25: 75$; solvent for column 2: $\mathrm{ACN}-\mathrm{H}_{2} \mathrm{O}, 25: 75$) and a silica gel column (100 g , petroleum ether-EtOAC-MeOH, 10.0:4.5:0.5) led to 25-O-acetyldimigenol-$3-\mathrm{O}-\beta$-D-xyloside ($40 \mathrm{mg}, 0.01 \%$), 25-O-acetylcimigenol-3-O- $\alpha-$ L-arabinoside ($30 \mathrm{mg}, 0.0079 \%$), and 7 ($30 \mathrm{mg}, 0.0079 \%$). Under identical conditions, subfractions CR-SF-IX (1.7 g) and CR-SF-X (0.9 g) gave respectively cimicifugoside H -2 (8 mg , 0.0021%) and cimicifugoside $\mathrm{H}-1$ ($13 \mathrm{mg}, 0.0034 \%$).

Cimiracemoside I (1): pale yellow powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (began decomposing at $250^{\circ} \mathrm{C}$), $[\alpha]^{20_{D}}-13.13^{\circ}\left(\mathrm{c} 0.267, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $\nu_{\max }\left(\mathrm{cm}^{-1}\right) 3485,3409,2923$, 1454, 1379, 1038, 966; HRESIMS m/z 623.3581 (calc 623.3560 for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Na}$).

Cimiracemoside J (3): pale yellow powder, mp 138-140 ${ }^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}-14.23^{\circ}$ (c $0.260, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and $2 ;$ IR $v_{\max }\left(\mathrm{cm}^{-1}\right) 3468,2933,2869,1731,1454,1377,1240$, 1067, 755; HRESIMS m/z 683.3763 (calc 683.3771 for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{10}$ Na).

Cimiracemoside K (4): pale yellow powder, mp 142-143 ${ }^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}-59.32^{\circ}\left(\mathrm{c} 0.147, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $v_{\max }\left(\mathrm{cm}^{-1}\right) 3425,2935,2869,1732,1456,1376,1233$, 1042, 760; HRESIMS m/z 683.3745 (calc 683.3771 for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{10^{-}}$ Na).
Cimiracemoside L (5): white powder, mp $125-128^{\circ} \mathrm{C}$ $[\alpha]^{20}{ }_{D}-41.11^{\circ}\left(\mathrm{c} 0.450, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3466,2937,2871,1737,1455,1376,1241,1089$, 757; HRESIMS m/z 705.4205 (calc 705.4214 for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{O}_{11}$).

Cimiracemoside M (6): white powder, mp 107-109 ${ }^{\circ} \mathrm{C}$, $[\alpha]^{20}{ }_{D}-19.00^{\circ}\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $v_{\max }\left(\mathrm{cm}^{-1}\right) 3465,2933,2866,1732,1370,1235,1041,750 ;$ HRESIMS m/z 727.4041 (calc 727.4033 for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{11} \mathrm{Na}$).
Cimiracemoside N (7): pale yellow powder, mp 172-174 ${ }^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}-70.36^{\circ}$ (c 0.367, CHCl_{3}); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $\nu_{\max }\left(\mathrm{cm}^{-1}\right) 3454,2935,2871,1729,1455,1372,1244$, 1070, 1030, 754; HRESIMS 661.3962 (calc 661.3952 for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{O}_{11}$).
Cimiracemoside O (8): pale yellow powder, mp 143-145 ${ }^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}-60.00^{\circ}$ (c 0.160, CHCl_{3}); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and $2 ;$ IR $\nu_{\max }\left(\mathrm{cm}^{-1}\right) 3449,2940,2869,1732,1455,1371,1241$, 1048, 983, 755; HRESIMS m/z 701.3889 (calc 701.3901 for $\left.\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{O}_{11}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}\right)$.
Cimiracemoside P (9): pale yellow powder, mp 151-153 ${ }^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}-69.77^{\circ}$ (c 0.440, CHCl_{3}); ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; IR $v_{\max }\left(\mathrm{cm}^{-1}\right) 3423,2956,2934,2870,1787,1731,1454$, 1362, 1243, 1041, 968, 753; HRESIMS m/z 675.3758 (calc 675.3744 for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{O}_{11}$).

Acknowledgment. This research was funded by Grant \#P50 AT00155 through the National Center for Complementary and Alternative Medicine (NCCAM), the Office of Dietary Supplements (ODS), the National Institute of General Medicine(NIGMS), and the Office for Research on Women's H ealth (ORWH). Contents are solely the responsibility of the authors and do not necessarily represent the official views of NCCAM, ODS, NIGMS, or ORWH

References and Notes

(1) Compton, J. A.; Culham A.; Gibbings, J . G.; J ury, S. L. Biochem. Sys. Ecol. 1998, 26, 185-197.
(2) Compton, J. A.; Culham, A.; J ury, S. L. Taxon 1998, 47, 593-634
(3) McKenna, D. J.: J ones, K.; Humphrey, S.; Hughes, K. Altern. Ther 2001, 7, 93-100.
(4) Lieberman, S. J. Women's Health 1998, 7, 525-529.
(5) Corsano, S.; Linde, H.; Piancatelli, G.; Panizzi, L. Chimia 1967, 21, 130-131.
(6) Bedir, E.; Khan, I. Chem. Pharm. Bull. 2000, 48, 425-427.
(7) Shao, Y.;'Harris, A..; Wang, M.; Zhang, H.; Cordell, G.; Bowman, M.; Lemmo, E. J . Nat. Prod. 2000, 63, 905-910.
(8) Hamburger, M.; Wagner, C.; Benthin, B. Pharm. Pharmacol. Lett. 2001, 1, 15-17.
(9) Wende, K.; Mugge, C.; Thurow, K.; Schopke, T.; Lindequist, U. J . Nat. Prod. 2001, 64, 986-989.
(10) Berger, S.; J unior, P.; K opanski, L. Planta Med. 1988, 54, 579-580.
(11) Kruse, S.; Lohning, A.; Pauli, G.; Wintergoff, H.; Nahrstedt, A. Planta Med. 1999, 65, 763-764.
(12) Hagels, H.; Baumert-Krauss, J.; Freudenstein, J. 48th Annual Meeting of the Society of Medicinal Plant Research; Zurich, Switzerland Sept 3-7, 2000.
(13) He, K.; Zheng, B.; Kim, C. H.; Rogers, L.; Zheng Q. Planta Med. 2000, 66, 635-640.
(14) Koeda, M.; Aoki, Y.; Sakurai, N.; Nagai, M. Chem. Pharm. Bull. 1995, 43, 771-776.
(15) Watanabe, K.; Mimaki, Y.; Sakagami, H.; Sashida, Y. Chem. Pharm Bull. 2002, 50, 121-125
(16) Chen, S.-N.; Li, W.; Fabricant, D. F.; Santarsiero, B. D.; Mesecar, A.; Fitzloff, J. F.; Fong, H. H. S.; Farnsworth, N. R. J . Nat. Prod. 2002, 65, 601-605.
(17) (a) Li, C.-J .; Li, Y.-H.; Chen, S.-F.; Xiao, P.-G. Yaoxue Xuebao 1994 29, 449-653 (b) Kadota, S. Li, J. X.; Tanaka, K.; Namba, T. Tetrahedron 1995, 51, 1143-1166.
(18) Sakurai, N. Nagai, M.; Inoue, T. Yakugaku Zasshi 1975, 95, 13541360
(19) (a) Ye, W.-C.; Zhang, J.-W.; Che, C.-T.; Ye, T.; Zhao, S.-X. Planta Med 1999, 65, 770-772. (b) Shao, Y.; Harris, A.; Wang, M.; Zhang, J.; Cordell, G. A.; Bowman, M.; Lemmo, E. J. J . Nat. Prod. 2000, 63, 905-910, in this paper this compound was named cimiracemoside C. (c) He, K.; Zheng, B.; Kim, C. H.; Rogers, L.; Zheng Q. Planta Med. 2000, $66,635-640$, in this paper this compound was named cimicifugoside M.
(20) Takemoto, T.; Kusano, G.; Kawahara, M. Yakugaku Zasshi 1970, 90 64-67.
(21) Sakurai, N.; Inoue, T.; Nagai, M. Chem. Pharm. Bull. 1979, 27, 158165.
(22) Kusano, A.; Shibano, M.; Kusano, G. Chem. Pharm. Bull. 1999, 47, 1175-1179.
(23) Koeda, N.; Aoki, Y.; Sakurai, N.; Kawai, K.; Nagai, M. Chem. Pharm Bull. 1995, 43, 771-776.
(24) Sakurai, N.; Kimura, O.; Inoue, T.; Nagai, M. Chem. Pharm. Bull 1981, 29, 955-960.
(25) Zhu, N.; J iang, Y.; Wang. M.; Ho, C.-T. J . Nat. Prod. 2001, 64, 627629.
(26) Kusano, A.; Takahira, M.; Shibano, M.; Miyase, T.; Kusano, G. Chem Pharm. Bull. 1999, 47, 511-516.
(27) Tsuzuk, W.; Tsuzuk, S.; Hayamizu, K.; Kobayahsi, S.; Suzuki, T. Chem. Phys. Lipids 1995, 76, 93-102.
(28) Hashimoto, T.; Tori, M.; Asakawa, Y. Phytochemistry 1991, 30, 29272931.
(29) Li, J. X.; Kadota, S.; Hattori, M.; Y oshimachi, S.; Shiro, M.; Oogami, N.; Mizuno, H.; Namba, T. Chem. Pharm. Bull. 1993, 41, 832-841.
(30) Kusano, A.; Takahira, M.; Shibano, M.; In, Y.; Ishda, T.; Miyase, T.; Kusano, G. Chem. Pharm. Bull. 1998, 46, 467-472.
NP0200818

[^0]: * To whom correspondence should be addressed. Fax: 01-312-413-5894. Tel: 01-312-996-5972. E-mail: hfong@uic.edu.

[^1]: a TMS was used as internal standard; chemical shifts are in δ scale with J values in parentheses

